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Abstract: We study the existence of periodic pullback attractor for non-autonomous dynamical
system generated by Sine-Gordon equation with non-autonomous term as well as memory. By a
priori estimation, we obtain the global solution of the equation and the pullback absorting set of ; by
constructing the contraction function, we prove the asymptotic compactness of , then the existence
of pullback attractor of the corresponding non-autonomous dynamical system in is established;
moreover the pullback attractor is proved to be periodic, when the non-autonomous dynamical
system has a periodic deterministic forcing term.

1. Introduction

In this paper, we study the asymptotic behavior of Nonautonomous sine Gordon equation with
memory:

u, — AU, +A2u+_|':g (s)A(a(x)Au, (t—s))ds+ f (sinu)=h(x,t),
u=0, Au=0, xel',t>r, 1)
U(X,7)=Uy(x), U, (x,7)=0Uy(x),(x,t) e Qx[z,).

HereQ < R"is a bounded domain with smooth boundedI", u,:Qx(—,0]— Ris the Past

history of u.

It is an important problem in mathematical physics to study the long-time dynamic behavior of
the solution to problem (1) which is a dissipative infinite dimensional dynamic system. When the
external force term h is autonomous, there are many important research results on the long-term
dynamic behavior of the solution. For details, please refer to the literature **.Zhang Jianwen, Ren
Yonghua, Wu runheng and Feng Taol™ The dynamic behavior of nonlinear thermoelastic coupled
sine-Gordon type system under the action of Peierls Nabarro force is studied. In this paper, the
continuous solution of the system under certain initial boundary conditions is obtained by using the
operator semigroup theory, and the asymptotically compact invariant absorption set is constructed
by using the decomposition method of operator semigroup. Finally, the existence of global attractor
is obtained. When the external force term h is nonautonomous, papers mainly studies its pull back
characteristics, The pull back attractors of various equations are studied in the literatures®.

Among the nonlinear evolution equations, the study of sine Gordon equation has been favored by
many scholars,Under the condition of autonomy, The global solution™ global attractor™ and
dimension estimation™™" *?is studied in articles! *>*3;Under the condition of nonautonomy, The
study of sine-Gordon type equation is mainly about pullback dynamics™™ The pullback dynamics
of Nonautonomous stochastic sine Gordon equations with additive perturbation is studied int*®!, The
existence of a pullback attractor on (H;(o)x|_2(o))2 for the stochastic dynamical system

corresponding to the system of equations is proved by using the method of uniform estimation of
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solutions. More results of pullback dynamics can be found in 262,

Some scholars have studied the asymptotic behavior of differential equations with linear memory.
See B4871 However, the asymptotic behavior of the generalized nonautonomous sine-Gordon type
equations with damping memory has not been studied. Combined with the research results of
related scholars,The D -pullback attractor of Nonautonomous sine Gordon equation with memory
term is studied. The D -pullback asymptotically compactness of continuous cocycle @ of problem
(1) is obtained by the method of contraction function, and then the D - pullback attractor of problem
(1) is obtained. At the same time, it is discussed that when the non autonomous external force term
has periodicity about t, its corresponding D -pullback attractor also has the same periodicity.

In order to make the research smooth, some hypotheses are given

(E,) f eC*(R),And meet the following conditions f (s) <C, (1+|s|q),hereq >0;

(E,)Memory kernel function VseR", g(+)e CZ(R*), 9'(s)<0<g(s), g(+»)=0,
1(s)=-g'(s) And satisfied

(I),ueCl(R+)ﬂ Ll(R+),,u’(S)SOS,u(S),‘v’Se R™,

(Il)yozj:y(s)ds >0, #/'(8)+ mu(s) <0, Vs e R,  is a positive constant

The problem (1) is transformed into a definite nonautonomous dynamical system, Therefore,
combined with the method of reference 7 | the historical displacement variable is introduced,
namely

n=n' (x,s)='|':ut (x,t—r)dr,(x,s)eQxR",t>0, (2)

By formal differentiation we have

7 (%,8)=-1,(x,8)+u, (x,t),(x,5) e QxR*, t>0.(3)

according to(E,) x(s)=-g’'(s),and g (+o)=0,Then problem (1) can be transformed into the
following equivalent equations:

un—Aut+A2u—J:ﬂ(s)A(a(x)Ant(s))ds+f(sinu)=h(x,t), (x,t) e Qx[r,), @
1M, =—1,+U, (Xt,5)e QxR xR".

Initial condition:

u(x7)=uy(x), u (x7)=u,(x), 77 (x8)=n(xs5), n'(x0)=0. (5)

Corresponding boundary conditions:

u=Au=0, (X,t)eFxR*, n=An=0, xel', t>7. (6)

2. Preliminaries

Without losing its generality, Let(«,) and
respectively

H =V, =L*(Q),V, = H*(Q)NH (Q),

The corresponding inner product and norm are

(u,v), =(Au,Av), Jul,, = JAul

Leta(x)eC*(Q),then

meas{x ela(x)> O} >0,

and

Vv, :{u eH UQB.(X)|AU|2 dx <oo,u|.=Aul; :0},

denote the inner product and norm of L*(Q),

Ho
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Easy to know,V, is a Hilbert space whose norm is:
2 2
Ju " =J.Qa(x)|Au| dX.
According to the above definition, the history space is given
+. . + @ 2
M=L2 (R ,Va)={77.R SV () ds<oo},
The history space is also a Hilbert space, and the corresponding inner product and norm:

(1.),0= [ () a(x)an(x s)ag (), |l = [ ()| ()] os.

According to Poincare inequality: 21|V'u V™
In order to get our results, the related concepts and theories are given.
Definition1.1"* Let mapping 6,:Q, > Q,,teR. (Q,{6} _,)is called parametric dynamical

system, if the following conditions are met:
1) 6, is an identity map defined on €, ,i.evVqeQ,, 6,(q)=q;

2)6,..(a)=6,(0,(a));

3)(t,q) > 6,(q) is continuous.

Definition 1.20*! (Ql,{et}teR) is parametric dynamical system,mapping®: R*xQ, x X — X is
called a continuous cocycle dominated by(Ql,{Ht}teR) on X ,if forvq e Q, #t,7 € R" satisfying:

1)®(0,q,+) is an identity map defined on X ,i.eV(q,x) e Q, x X, ®(0,q,x)=X;

2)®(t+7,0,x)=@(7,6,(q), @ (t,9,X));

3)d(t,q.): X — X s continuous.

If, in addition, there exists a positive number T, ,such that for every t=0,qeQ, ,

i s| |2 ,here A is the first eigenvalue of —A.

cb(t, 6;. (q)) =®(t,q,+),thend is called a continuous periodic cocycle on X with periodT, .

LetP(X)denote the family of all nonempty subsets of X ,and S is the class of all families
D={D(q):qe,} < P(X).Then we consider given a nonempty subclassD c S .

Definition 1.3 Let T, be a positive number,and [3:{D(q):qul}cP(X) ,allgeQ,
D(6?To (q)) =D(q), Then D is said to have periodT, .

Definition 1.4(contractive function)!?” Let X is a banach space, B is a bounded subset of X
¥ (s,+)is the function defined onX x X .if for any sequence{x,} < B there is a subsequence
(X} = {X,} , such that

limlim ¥ (X, %, )=0. (7)

k—w -0

We call ¥ (+,) a contractive function on Bx B

We denote the set of all contractive functionson BxB by contr(B).

Definition 1.5( D- pullback absorbing set)!** 2! if for any qeQ,, D € D ,there exists
t,=t,(a.0)20

such that

®(t,0.(a),D(6, ())<= B(q) X vt =t,,

A family of bounded sets B = {B(a):qeQ,}isD- Pullback absorhing.
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Definition 1.6( D- pullback attractor)*¥) A family of nonempty compact sets
A={A(q):qeQ,}eSisa D-pullback attractor,if it satisfies:

1)for any vq e Q,, A(q)is compact;
2) Ais D-pullback attracting,i.e for all D € D, qeQ,,

lim dist(@(t,0., (), D(6, (), A(a)) =0,

t—>+o0

Here dist(Q,,Q,) :igg ;ngz d(xY),Q.Q, = X,d(ss) is the distance of space;

3) Ais invariant,i.e for all (t. q) e R* xQ,,

(t,,A(a)) = A(6,(a))-

there existsT, >0 ,such that A(‘9T0 (q)) =A(q), vqeQ, then we say A is periodic with period
T,.

Definition 1.7"° For eachD €S, q € Q, ,we define the omega-limit set of[Satq (in the pullback
sense)asA(f),q)z N U®(t,9,t(Q)1 D(Qt(q))) :

s>0t>s

Theorem1.1% Suppose the continuous cocycle @ is D- pullback asymptotically compact,and
there exists B e D which is D- pullback absorbing. Then, the family A defined by A(q)

= A(é, q)(q eQ,)isa D-pullback attractor.
Theorem1.2”? Let® is a continuous cocycle in (Ql,{et}teR) ,suppose @ has a D- pullback

absorbing set B={B ,moreover for any v>0,qeQ, ,there exists T=T(q,v) and
q 1

qety

¥; 4 (+e) € contr ( B, . ) ,such that

||CI)(t,6?_T (9),x)-@(t, 0 (a), y)”X <v¥rg(xy) forvxyeB,
where ¥, dependsonTand q.

Then®is D-pullback asymptotically in X .
Theorem1.3M™* #!1 Suppose ® be a continuous periodic cocycle with periodT, >0 on X over

(Ql,{é)t}teR) Jifd has a D-puback attractor Ae D ,thenA is periodic with period T,,if and only if
® has a D- pullback absorbing set BeD ,and its periodis T, .

3. Existence and Uniqueness of Global Solution

Let X =V, xHxM,z, = (uy,u,,7,),2 = z(t):(u(t),ut (t),n‘(s)).

Lemma2.1 Under assumption (E,)—(E,),andheli_ (R,H), z,€ X ,Then z determined by
problems(4)-(6)satisfies the following properties:
644,'Cs Q)

Ky

j: ”VV(S)”2 ds <2H, (t-7)+324'C¢ Q|7 +84" j:

-7

V[ +[aulf + ||77t ||i/I <d4e™H,(t-7)+ +164, e I;e"ls h(s)”2 ds,

h(s)”2 ds .

wherev =Uu, +¢&U, ¢ is a sufficiently small positive number, which will be given below.

Proof: Taking H —inner product by v=u, +¢&U in(4),we get
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1d
oo M+ 2 P +aulf e[ VulF )+ o vl + eflaulf & [vuf +e2Juf +

(jowy(s)A(a(x)Ant(s))ds,ut)+g(_|.:y(s)A(a(x)A77‘(s))ds,u)+(f(sinu),v):(h(x,t),v),
(8)

According to7; = -7, +u, ,Assumption(E, )and Holder Inequality,we have

(I, us)a(a(x)an (s))asu )= 2l + 2]l . ©

([, u(s)a(a(an (S))ds,u)z Ll _gz%nmna )

According to Assumption(E,)andh e L2

loc

(R,H),we get

h,v) <l < 22 vl +—IIVVII /(11)

(f(sinu),v)<|f(sinu)||v]<247|f (sinu) || |Vv|| <8A'CIOQ+= ||Vv|| (12)
Substituting(9)-(12)into(8),we obtain

% H, (t)+K, (t) <447 || +1647C2[0], (13)

where

2 1 2
Hy ()= [+ &*ul” + Jaul = vl + [, = v+ S laul+ '],
K, (t)= E||Vv||2 —2¢ ||v||2 + 2<’3||Au||2 +2&° ||u||2 —-2&° ||Vu||2

_2u]a],
Hy

24 ”a”w 2 2 1 2
”[2“%1‘2—15 ol + [+ Lo
And take a sufficiently small & ,such that

2
g/11—2<s>g, 1—8@1—M5>0,5[1+%j3%g+25i32/11,(rowill be given later,
2 7 2r, 2r,

the last two conditions are given in advance).
Letx, =min {g%} .then

ool + 2 [, 2247 I+ a2l 3422 JWF 4227l - [l

d 1
5 MO+ H (1) +oVl <4zl +1647C3l0), (14)

integrating(14) over (t—z,t) ,we get
-1~2
(1) <eH, (t— o)+ A G Ly
K
[ [vv(s) ds<2H, (t-7)+322°CZ|Qc +84 [ [n(s)[ ds. (16)
Then

e "“J e |h (s)||2ds, (15)

W < Jaulf + [ < e, (1)« S ag e [ e (s s, a7y
K -T
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[ [vv(s) ds<2H, (t-7)+322°CZ|Q)c +84 [ [n(s)[ ds. (18)

Lemma 2.1 is proved.

Theorem 2.1 Assume that(E,)—(E,) .andheli (R, X),z,€X,T >0,Then problem(4)-(6)
admits a unique solution zel”([z,%),X),u e*([z,T],Hg) . and z=(u(t),u(t),7'(s))

depends continuously on initial datain X .
Proof: We will use the faedo-Galerkin method to prove the existence of global solutions.
Stepl.Construct approximate solution
Let—Aw, = Ao ,where 4 is the eigenvalue of —A with homogeneous Dirichlet boundary on Q,
-

. is the characteristic function corresponding to eigenvalue A4 ,According to the eigenvalue

theory, w,, m,,---, @, constitutes the standard orthogonal basis of.
FixedT > 0,for a given integer m € N ,the projection operators from the following spaces to their
subspaces are represented by P, and Q,, ,respectively:

span{w,, @,,---, @} =V,, span{¢,,c,,---.5,} =M,
Letu,, (t), 77, (s) be determined by the following nonlinear ordinary differential equations:

(umtt —Au,, +A%, +J'0°°,u(s)A(a(x)A77;1 (s))ds+ f (sin um),a)i): (h(x,t), @),

(nrtnt—i_nrtns'g.i)M:(utIGi)M’ i=12---m

(19)

Where u,, (t)=>_ Uy, (t) o, 7, (s Zn,m )s; initial condition  z,; = (U, Uy, 77,) When
i=1

m — 40, Z,, = Z,in X .From the basic theory of ordinary differential equation, we can know, the

problem(4)-(6)has an approximate solution on(z,T):z, ( s mt,nm)

Step2.priori estimation
To proof of existence of solution in X ,multiplying(19)by u (t)+&u,, (t) ,And sum i let

v (t)=u, (t)+eu, (t),According to lemma 2.1, a priori estimate of solution in X space is

obtained:
644, 'C¢ |
K

| ds, (20)

ol o [+, < 1 (1) ez ]! e

.[tt—r VV
So z= (um,vm,ryr‘n) is uniformly bounded in L~ ([r,+oo), X) :

Step3.Limit process
From (20)(21),we get
Because {u, } is bounded on V,,{u_} has subsequences strongly convergent to u on,still

denoted by {u, } ,such that
{u,} convergesto u almost everywhere onH .
V, >V inL* ([r,+00); H)N L ([7,T]; Hy ) weak*,
U, > U inL*([r,+0);V, ) weak*,
m o0t TEL([r,+0); M) weak*.
Then
Because of (u,, @ )=(v,, o )-(eu,, @, ),

)| ds <2H,,, (t-7)+324,°C2|ofr+84[_|h(s) ds. (21)
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SO (Up 0 ) = (V, )(eu @, )inL* [0, +00) weak™.
and(-Au,,,, @ ) Uy Ve, )= ( v, Ao ) (gVu Aﬁwi),

1

then(—Au,,, o, (Vv Ao ) ( Ao )ln L*[0,T] weak*.

%(umt,a)i )— (ug, @ ) in
D’[0,+00) weak,where D'[0,+) is the conjugate space of infinitely differentiable space D[0,+0).

(Azum,a)i)z(—Aum,ﬂ,,a)i)—>(—Au,ﬂ,,a)i)in L*[0,+00) weak*.
(j:y(s)A(a(x)An; (s))ds,a)i)—>(L:Oy(s)(a(x)(—A)nt (s))ds,/l,a)i) inL”[0,+00) weak*.
According to the assumption(E, ), f (sinu)is a continuous function,

We get( f (sinu, ), @, )= (f(sinu),@, ) inL*[0,+x) weak*.
Based on the above convergence, z,, — z,in X weak. For alli and whenm — +o0 ,according to

According to (u,, @ )— (U, @ ) in L*[0,+0) weak*, (U, )=

the density of substrate @, ,,---, @,,--- ,we have

(utt — Au, + A% +J':y(s)A(a(x)A77‘ (s))ds+ f (sin u)a)) = (h(x,t), ), Yo eV,,

(7 +756), =(Us6),,» YseMs

Therefore,the existence of weak global solutions to problem(4)-(6)is proved.

The uniqueness and continuous dependence of the solution:

Letz, = (ui (t),u (), 7 (s)) (i=12),VteR, be two solutions of problem(4)-(6)as shown

above corresponding to initial data 24 = (g, U}, 775 (5)) ,Then
w(t)=u,(t)—u,(t), & (s)=m(s)-m(s) satisfifies
W, — Aw, +A2W+J:y(s)A(a(X)A§t (x,5))ds+ f (sinu,)— f (sinu,) =0,
& =—C +W, (22)

(w(e),w (2). " (5)) = (0.t 7t ) (4307 ),

Taking H -inner product by w, in(22) and making use of assumptions(E, )(E, ),we have
1 d 1 2 2 . .
Ea{”wt”z + | aw’ +E||§r||M}+||th||z +%||‘3t||M <—(f(sinu,)—-f (sinu,),w,)

2 2

< 20C, W] wi]| < aCy " + aCy ],
then

d

| ol b e, 2 < ol + el + e ) 29
where B=max {29C;1,%,2qC,, 1, }

Applying the Gronwall inequality to(24) yields
o (O +aw(Of + e, = (o (<) +Jaw()]

(23)

s|(f'(oc)(sin u, —sin uz),wt)| <2

2 2 B(t-1)
+e M)e . (25)
(25) implies that z :(u(t),uI (t).7' (s))depends continuously on initial data in X ,and hence, the
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solution of problem(4)-(6) is unique. Then the uniqueness and continuous dependence of the
solution are proved.
Theorem 2.1 is proven.

4. Existence of Pullback Attractor
LetQ,=R, 6, (r) =r+t,VreR,and
O (t,7,2)) = Z(t+r,r,Zo)z(u('[+z'),ut (t+r),77t”(s)),z'e R,t>7,2,e€ X.(26)
From the existence and uniqueness of the solution of problem(4)-(6),we have
CD(t+r,T,Zo)=CD(t,T+r,(D(I’,r,ZO)), reRtr>r,z,e X,
And forany 7eR,t>7, CD(t,r,-): X — X s continuous,so, ® is a continuous cocycle.
Assume thath(x,t) e L. (R; H )and
[
whereo = k.
Letr?(t)= .[_Om e’
tIirfroloe("r2 (t)=0, (28)
And denote by D, the class of all families Jy D={D(t);teR}cP(X) such that
D(t)= B(0.r, (1)),
For somer, e R, ,where B(0,r; (t)) denotes the closed ball in X centered at 0 with radiusr, (t).
By lemma2.1,and(27),we get

h(s, s)||2ds <o, VteR, (27)

h(s,s +t)||2 ds, R, be the set of all functionsr : R — (0, +o0) such that

|lo(z, t—r,zt_,)i =|z(t t—T’Zt_,)i :”(u(t), ut(t),n‘(s))”i is bounded.
LetR, (t):wﬂaﬁe-ﬂ :_Te“ h(s) ds,

andB,_ (t)= {z e X7 <R, (t)} it is straightforward to check that B, e D_ ,and moreover the

family I§U is D_-pullback absorbing for the cocycle ®.
Lemma3.1 Assumed that the assumptions of Theorem2.l,andheLj (R, X)satisfies (27),the

cocycle @ has
a D_-pullback absorbing set in X .

Lemma3.2 Assumed that the assumptions of Theorem2.1l,andhe Lj (R, X)satisfies (27),the

cocycle® is
D, -pullback asymptotically compact.

Proof:Fort, € R, let z, :(ui (t),uy (t),nf(s)),(izl,Z) be two solutions of problem(4)-(6) as
shown above corresponding to initial dataz; = (u(')ul'n('J (s)) e D(t,—7) ,wherer >0,
Thenw(t)=u, (t)—u,(t), &' (s) =1 (s)—n; (s) satisfifies
W, — Aw, +A2W+J.:y(s)A(a(x)Aft (s))ds+ f (sinu,)— f (sinu,)=0,
& ==& +W, W= Aw| =0, (29)

(o e, & (3)) = (ug. 175 ) = (ug v 3 ),
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Taking H -inner product by e"w, in (29) (where r=c),and making use of assumptions
(E,)—(E,).we have

%(e"H () + 26" [Vw [ + e
here H,, (t) =|w +[aw|’ +||§ ||

t |'2w < re”HW(t)—Z( f (sinu,)— f (sin uz),e”wt), (30)

mtegratlng (30)over the interval[s,t, ] ,we obtain

e"H, (t,)-e"H, (s)+2[ e [Vw (£) d¢ + s [ e |7 d¢
<r["e*H, (£)dg —2[ (1 (siny, ()~ f (sinu, (£)).e“w, (£))d¢ (3D)
< rj:°e'4HW(§)d§+2J':°(f(sin u,(£))- f (sin ul(g)),ergwt(g”))dg,

integrating(31) over the interval [t,—7,t,] with respectto s,we have

re™H, (t,)- j:O_T e"H,, (s)ds+ ZJ:O_T Lt" e

VW, (g)“Z dgds+ 'ul.[:_r sto e

& ||; d¢ds

t 4 t , (32)
< r.[t(’_r.[: e“H, (¢)dgds + ZLO_TL‘) e ( f(sinu,(¢))— f (sinu,(£)).w, (g))dcjds,
Taking H -inner product by e"w in (29),we get
d

a(e” (w,,w) +1ert [V j +e™ aw]” < re™ (w, w)+ % re™ [vw|” +e™ |w|

#0”2 L. ot §|| L2 e“||AW|| e (f(sinu,)— f(sinu,),w),

integrating(33) over the interval[s,t, ] ,we arrive at

11 5 1, (o, 2 f 1 n
(E—Eﬂl r——ﬂl er e |aw(¢)| dg +e °(Wt(t0),w(t0))+§e 0
vw(s || +(1+ jJ. e w,

&4 dg = [Fer ( (sinuy (£)) - f (sinu, (¢)).w(¢))d¢

integrating(34) over the interval [t,—7,t,] with respectto s,we have

(5 3ar 3 I e acas< [ e ) wis))as 4 3
reo o,
+(1+§jﬁo_ffs e w
tolal, o o
* 02 I%—rv[s eg

(35)
11 1
Letr, ==—=Ar—-=4%r>0.
0= AT AT
Substituting(35)into(32),then

(33)

ww(t,)[’

<e”(w(s),w(s))+ ; e”

|| d¢ (34)

LK lal. J“oerg
2 s

Vw(s)”2 ds

vw(t,)[

<) dgds—re™ (w, (to),w(to))_%eﬂo

54”; d{ds—J':ir _|:° e ( f(sinu, (£))- f(sinu, (¢)), w(¢))d<ds,
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re™H,, (t, )—f’ e"H,, ds<r _[t° ¢

0

_J' ds+—j e"
2r+r J:L e w
%—n L1 P el dcts— [ [T (F (sinu, (¢) - f (sinu, (¢))w(¢) dcs

2[0 [resvw ()] déds—faf;"_,f e fgIIMdé“dS

—2_r0 I e“( (sinu,( f(sinuz(g”)),wt(g))dgds

cj)”2 d¢ds + rJ.:_T Lt’) e

& ||; d¢ds

vw s)||2 ds

2

(&) dgds—7— e”°( (to),w(to))-sze"o vw(t,)|

o

Mo r o 2
SE N (wt(s),w(s))ds+2—r0 N vw(s)| ds
L :° t°er§ ( f (siny, (£))- f (sin uz(g)),w(g))dg“ds
L (36)
_[ e“( (sinu, ( f(sinuz(g)),wt(g“))dgds
— " (w (1), wits >) )
integrating(33) over the interval [t —17,t,] we get
1 r 2 rt, 1 rt 2
[E—a]j e law(¢ )| dg +e U(Wt(to),w(to))JrEe [vw(t)| <

er(t"")(w (t,—7),w(t, —r))+;e “vw(t, -7 || +rj e (w (¢).w(¢))ds +

Ho
el

H d¢ - J'tO réV( smul(g))—f(sinuz(g)),w(g))dg,

(37)
Substituting (37)into(36),we receive

reM HW (to)+ J':O_TersHW (S)ds < 6J‘:o_rer¢ W, é/)”2 dé’ + (2 + 2/.10 ||a||Oo )J.:O_Ter{ 54”3 dg
+4e") (Wt (to —T),W(to —T))_A'erto (Wt (to)’w(to ))

+2¢"7) |[vw(t, - r)||2 — 2" [Vw(t, )||2

+[rL+4ert°Ter§ (w, (g),w(g))dg—ﬂf{e“(f (sinu, (¢))— f (sinu, (g“)),w(g“))d{ (38)
+% toi or¢ VW(§)|Z dé/_LI:f, :Oerg(f (sin ul(é’))— f (sin u, (()),W(é/))dé/ds

I e (f(sinu,(¢))-f(sinu, (¢)),w (¢))dgds
ey L et (w (to),w(to))— e

0
also,integrating(30) over the mterval[ o — 7., we get

VW ||
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eH, (t,)-eH, (t,—7)+2[" e [Vw

N de v e, e

< rI e H,( dcj—ZJ‘le“ ( f(sinu,(¢))- f (sinu,(£)).w, (g))dcj,
Substituting (39)|nto(38),we receive

reH, (1) < 20 H, (1 -r) 2] € (1 (sinu, (£) - (sinu, (€)),w (€))ag
#4671y —2) w(ty <)) —4e™ (w, (1), w(ty))

r ty-7
+2e b ||VW —r” —2e™ |IVw(t ||

+(L+4rjf° e (w (6).w(¢))dg ~4[ & (£ (sinu (¢)~ f (sinu, (¢))wi(4)d¢

(39)

=T
Iy 0

LAY L
ro b7

I e (f (sinu,( f(sinuz(g)),wt(g“))dgds
—rLe”‘J (w, (to),w(to)) ||

I
2+ 24, ||a||w r}_

VW(()” dé"__ItOJL e ( f (sin ul(cj))— f (Sin u, (g)),w(g))dg”ds (40)

0
H
Combined with the above estimation, and combined with(40),let
r ity [T or 2
Vo (U6 ) (7)) = e [ e o) o

where b = max {3%-1,

£_4) o e (w(6)w(¢))dg

_2b _any I:_Tef? ( f(sinu,(¢))— f (sinu, (<)), w, (g))dg“

A7t J': e" (f (sinu, (£))-f (sin u, (g)),w(;))dg (41)
——r’le ”°J‘: j e“( sinu, ( f(sinuz(g“)),w(g“))dgds
—2r e”OI I e (f (sinu( f(sinuz(g“)),wt(g“))dg“ds
_(r_z +471J(wt (t,), W(to))—[2—%+2ﬂlT1J”W(to )||2 :

and

Ry = Hulto =)+ 4(w (4, =) w(ty =)« 2Jvw(t, o)

then

H,(t)<z'e ™R, +W¥, . ((ul u, ), (g, u?, 7702))

Bylimz e ™R __ =0 ,forvv >0 we taker, large enough such that

T—>0

H,(t)<v+¥, . ((u1 u;, 773) (u2 u/’, 775))
Thanks to Theorem1.2,Theorem2.1 and lemma3.1,it is sufficiently to prove that the function
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¥, . (+e)econtr(B,),let(u, (t),u, (t),7,)be the corresponding solution of(ug,uf,%”) eB,
(n=12,---) from the observation above, without loss of generality(or by passing to

subsequences),we assume that
@ u, >u =weakly inL”(t, —7,,t;V, ),

@ u, > u, *weakly in L™ (t, —75,t;H),
@ u, >uinl?(t, —7,,ty;H),
@ u,(t,—7)) > u(ty—7,), u,(t)—>u(ty)inl?(Q).

Now,we will deal with each term in (41)one by one, is a bounded subset of X ,Assumed that the
assumptions of @@ , 515

U, (£)-u, (<) d¢ =0, (42)
fimlim [ e* wm(g)—wn (&) ds =0, 43)

fim fim [ J 2 (£) = () (£) -1, (£))didS =0, (44)

ot
lim lim e

m—o0 N—o0 Ji;—7

L'El!ﬁgj‘ 2)— Uy (to))-(um (t,)—u,(t,))dx=0, (45)
lim iﬂ?ﬂ“m )=, (t,)[ dx=0, (46)

from (1) ,we further have

|f(sinum(s))—f(sinun(s))|:| (@ )(smu (s)-sinu, (s ))|
)
|

=|2f'(@)cos Uy (8) +Uy (S)sin (s) (s

< Cof|uy, (5) U, (5)

from 3 ,we obtain that
limlim [* " Q(f(sinu (s))—f(sinun(s)))(um(s)—un(s))dxds:0,(48)

m—o0 N—o0 to 7y

lim lim | TOJ' “J' ( (sinu,, f(sinun(g)))(um(cj)—un(g))dxdgds:0, (49)

m—o00 N—0o0

by(44)(45),we get
limlim [* " Q(f(sinum(s))—f(sinun(s)))(umt(s)—um(s))dxds=0,(50)

I rgj.( sinu,_ f(sinun(g)))(umt(4“)—um(§))dxd§‘is bounded,by

the Lebesgue dominated convergence theorem,we finally get

IimIimLTJ r4.|'( (sinu, —f(sinun({;)))(umt(g“)—um(g))dxdgds

m—o00 N—o0

_ :%(lﬂnlhn e” [, (f (sinu, f(5"1Un(§)))(“mt(§)"“m(éd)dng)dszzo’

m—00 N—>00

For each fixedt,,

(51)

Hence,from(42)-(51),we see that\PW0 (+,+) econtr(B,).

Lemma 3.2 is proven.
The main conclusions of this paper are as follows
Theorem3.1 In addition to the assumptions of Theorem2.1,andh e Lj (R, X )satisfies (27),the

cocycle ®hasa D_-pullback attractor in X .
Proof:From theorem 1.1, theorem 1.2, lemma 3.1 and lemma 3.2, we can get the conclusion of

theorem 3.1.
Theorem3.2  In addition to the assumptions of Theorem2.1,and h e Lj (R, X ) satisfies (27),also
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h(x,t) is a periodic function with periodT, ,then the cocycle® hasa D, - pullback attractor in X
which is periodic

with periodT, .

Proof:In addition to the assumptions of Theorem2.1,andh e L} (R, X ) satisfies (27),alsoh(x,t)
is a periodic function with period T, ,then for everyZ € X,t > 0,7 € R ,we have that

O(t, 74T, 7)) =2(t+ 74T, 74T, 7) = 2(t+7,7,7) =D (t,7,7),

By Defifinition1.2,we fifind that® is periodic with periodT,,Let DeD_andD, be the T,—

translation of D ,Then for every o >0,s€R ,we have

lime ™" [5(3— r)”2 =0, (45)

r—oo

In particular,whens =7 +T,, 7 € R ,we get from(45)that

B(c+T,~1)| =0, (46)

lime™"

r—oo

From(46),we have [ST eD_,andD_ isT, —translation closed. Similarly, one may check thatD_ is
also T, —translation closed.

Therefore,D_isT, — translation invariant.

From theorem 3.1 and theorem 1.3, we can get the conclusion of theorem 3.2.

D, (s- r)”2 =lime™"

r—oo
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